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a b s t r a c t

A reduced-order nonlinear observer is developed to estimate the distance from a moving camera to a fea-
ture point on a static object (i.e., range identification), where full velocity and linear acceleration feedback
of the calibrated camera is provided. The contribution of this work is to develop a global exponential
range observer which can be used for a larger set of camera motions than existing observers. The observer
is shown to be robust against external disturbances in the sense that the observer is Lp8p 2 ½1;1� stable
even if the target object is moving or the camera motion is perturbed. The presented observer identifies
the range provided an observability condition commonly used in literature is satisfied and is shown to be
exponentially stable even if camera motion satisfies a less restrictive observability condition. A sufficient
condition on the observer gain is derived to prove stability using a Lyapunov-based analysis. Experimen-
tal results are provided to show robust performance of the observer using an autonomous underwater
vehicle (AUV).

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Relative depth information in a scene recovered using a moving
camera can be used to estimate the range (and hence, a 3D struc-
ture) of tracked feature points in 2D images. The objective of the
‘‘structure from motion (SfM)’’ problem is to estimate the Euclid-
ean geometry (i.e., range or 3D structure) of feature points of inter-
ests in a static scene when the motion of the camera is known. The
estimated 3D structure information can be used in variety of auto-
matic control and surveillance tasks.

Solutions to the SfM problem can be broadly classified as offline
methods (batch methods) and online methods (iterative methods).
References and critiques of batch methods can be found in [1–6]
and the references therein. Online methods typically formulate
the SfM problem as a continuous differential equation, where the
image dynamics are derived from a continuous image sequence
(see [7–17] and the references therein). Online methods often rely
on the use of an Extended Kalman Filter (EKF) [7,18–20]. Stability
of the EKF is proven as an observer for deterministic systems but it
is well known that the EKF may fail in some real applications
[21,22]. For the continuous time EKF, the convergence conditions
can only be checked by actually running the filter [23]. The EKF
is an approximation method, requires nonlinear dynamics to be
linearized, and requires a priori knowledge about the noise covari-
ance. In comparison to Kalman filter-based approaches, some
researchers have developed nonlinear observers for SfM with ana-
ll rights reserved.

: +1 352 391 7303.
lytical proofs of stability. For example, a high-gain observer called
the identifier-based observer (IBO) is presented for range estima-
tion in the seminal result in [17] under the assumption that camera
motion is known. In [12], a discontinuous sliding-mode observer is
developed which guarantees exponential convergence of the states
to an arbitrarily small neighborhood, i.e., the state estimation error
is uniformly ultimately bounded (UUB) to a small ball around the
origin of the system. A semi-globally asymptotically stable
reduced-order observer is presented in [24] to estimate the range
of a stationary object using a known camera motion. A continuous
observer which guarantees asymptotic range estimation is pre-
sented in [13] under the assumption that camera motion is known.
In [15], an asymptotically converging nonlinear observer is devel-
oped based on Lyapunov’s indirect method. An application of the
IBO is presented in [25] to estimate the range of features in a static
scene.

Recently in [26], a nonlinear observer was developed that iden-
tifies the distance to a target exponentially fast provided a persis-
tency of excitation (PE) condition is satisfied. The observer requires
the initial condition be close to the ‘true’ depth (i.e., a local result).
It is noted that the observer is guaranteed to converge with initial
conditions in an arbitrarily large compact set if the linear velocity
in the forward direction, and two angular velocities are small. The
authors in [26] propose that the camera velocities can be kept
small by using a visual servoing controller scheme and restricting
the domain of applications for the observer. In another recent work
[27], an immersion and invariance (I&I) based approach is used to
design a reduced-order observer to achieve global exponential con-
vergence of the estimation error. The observer requires camera

http://dx.doi.org/10.1016/j.mechatronics.2011.10.001
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velocity and acceleration measurements along with feature point
measurements from the image. The authors state that the observer
has to satisfy the Extended Output Jacobian (EOJ) observability
rank condition, which is more strict than the PE condition. Thus,
the observer in [27] cannot address all of the camera motions
achieved by the observer in [26]. The gain condition of the observer
in [27] is a function of image features, camera velocities and cam-
era accelerations.

In this paper, globally exponentially stable reduced-order ob-
server is developed with a less restrictive observability condition
than in other results. The derived gain condition is only a function
of the upper bounds on camera velocities and image size. The re-
sult is achieved provided an observability condition is met, which
is the same physically motivated condition required by most
observers available in literature (cf. [12,13,24,25]). If the observ-
ability condition is violated, the proposed observer can still be ap-
plied as a local observer, similar to [26]. The observation error is
shown to be finite-gain Lp8p 2 ½1;1� stable with respect to an
exogenous disturbance acting on the system. The observer errors
remain within a bound which can be reduced by tuning the obser-
ver gains. Results using both synthetic data and experimental data
are provided to show the performance of the developed observer.
Multiple camera trajectories are also analyzed to illustrate the per-
formance of the observer in different observability conditions. Sim-
ulations compare the current result with the results in [26,27]. This
comparison highlights the advantages of the global nature of the
result and the fact that the observer does not include a singularity.
Fig. 1. Moving camera looking at the static scene.
2. Mapping from Euclidean to image space

A moving camera observing a static scene induces feature mo-
tion in the image plane. Point correspondences between consecu-
tive images can be computed using existing feature tracking
techniques [28–30].

Let F � be an orthogonal coordinate system attached to the cam-
era at the location corresponding to an initial point in time, t0. After
the initial time, let an orthogonal coordinate system attached to
the camera which has undergone some rotation RðtÞ 2 SOð3Þ and
translation �xf ðtÞ 2 R3 away from F � be denoted as F c. Let
�mðtÞ 2 R3 denote the Euclidean coordinates of a feature point ob-
served by the moving camera expressed in the camera frame F c

and mðtÞ 2 R3 denote the respective normalized Euclidean coordi-
nates, defined as

�mðtÞ ¼ x1ðtÞ; x2ðtÞ; x3ðtÞ½ �T ; ð1Þ

mðtÞ ¼ x1ðtÞ
x3ðtÞ

;
x2ðtÞ
x3ðtÞ

; 1
� �T

: ð2Þ

Consider a closed and bounded set Y � R3. To facilitate the subse-
quent development, an auxiliary state vector yðtÞ ¼ ½y1ðtÞ; y2ðtÞ;
y3ðtÞ�

T 2 Y is constructed from (2) as

y ¼ x1

x3
;

x2

x3
;

1
x3

� �T

: ð3Þ

Using projective geometry, the normalized Euclidean coordi-
nates m(t) can be related to the pixel coordinates in the image
space as

p ¼ Am; ð4Þ

where p(t) = [u v 1]T is a vector of the image-space feature point
coordinates uðtÞ; vðtÞ 2 R defined on the closed and bounded set
I � R3, and A 2 R3�3 is a constant, known, invertible intrinsic cam-
era calibration matrix [31]. The expression in (4) can be used to re-
cover m(t), which can be used to partially reconstruct the state y(t)
so that the first two components of y(t) can be determined.
Assumption 1. The camera velocities are assumed to be bounded, and
the linear velocities are assumed to be continuously differentiable.
Remark 1. The states y1(t) and y2(t) represent pixel locations.
From the finite size of the image, y1(t) and y2(t) are bounded by
known constants as

y1 6 y1ðtÞ 6 �y1; y2 6 y2ðtÞ 6 �y2:

The relative Euclidean distance x3(t) between the camera and the
feature point is lower bounded by the camera focal length km (in
meters), and is not assumed to be upper bounded. Therefore, the
state y3(t), an inverse of the state x3(t), can be upper and lower
bounded as [26]

0 < y3 < y3ðtÞ 6
1
km
¼ �y3:
3. Perspective camera motion model

As seen from Fig. 1, the static scene point q can be expressed in
the coordinate system F c as

�m ¼ �xf þ RxOq; ð5Þ

where xOq is a vector from the origin of coordinate system F � to the
static point q expressed in the coordinate system F �. Differentiating
(5), the relative motion of q as observed in the camera coordinate
system can be expressed by the following kinematics [31,32]

_�m ¼ ½x�� �mþ b; ð6Þ

where �mðtÞ is defined in (1), ½x�� 2 R3�3 denotes a skew symmetric
matrix formed from the angular velocity vector of the camera
xðtÞ ¼ ½x1 x2 x3�T 2W, and bðtÞ ¼ ½b1 b2 b3�T 2 B denotes the lin-
ear velocity of the camera. The sets W and B are closed and bounded
sets such that W � R3 and B � R3. By re-arranging the expression in
(6), the motion of a stationary point as observed by a moving cam-
era can also be expressed as

_�m ¼
1 0 0 0 x3 �x2

0 1 0 �x3 0 x1

0 0 1 x2 �x1 0

2
64

3
75 b

x

� �
: ð7Þ

Using (3) and (7), the dynamics of the partially measurable state
y(t) can be expressed as

_y1 ¼ b1 � y1b3ð Þy3 � y1y2x1 þ ð1þ y2
1Þx2 � y2x3;

_y2 ¼ ðb2 � y2b3Þy3 � ð1þ y2
2Þx1 þ y1y2x2 þ y1x3;

_y3 ¼ �y2
3b3 � y2y3x1 þ y1y3x2;

ð8Þ
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where the states y1(t) and y2(t) can be measured as the output of the
system through the invertible transformation given by (4). The fol-
lowing symbols are defined to streamline the notations throughout
the paper:

h1 , b1 � y1b3; h2,b2 � y2b3; p1 , � y1y2x1 þ ð1þ y2
1Þx2

� y2x3 and p2 , � ð1þ y2
2Þx1 þ y1y2x2 þ y1x3:
4. Vision-based range estimation

The objective of the range estimation problem (i.e., SfM) is to
estimate the Euclidean coordinates of feature points in a static
scene using a moving camera with known camera velocities b(t)
and x(t). The projective transformation onto the image plane loses
depth information, but it can be recovered from 2D point corre-
spondences in the images. Once the Euclidean depth is recovered
using (3) and (4), the complete Euclidean coordinates can be
computed.

4.1. Range observer

In this section, a new nonlinear observer for range estimation is
presented. The dynamics of the range, given by �mðtÞ, are repre-
sented using the perspective dynamic system in (8). All six veloc-
ities and linear accelerations of the camera are available as sensor
measurements. Scenarios where the relative motion x(t) and b(t)
are known include a camera attached to the end-effector of a robot
manipulator, mobile robot, autonomous underwater vehicle (AUV),
or micro air vehicle (MAV). Linear and angular camera velocity, and
linear camera acceleration can be acquired using a wide array of
sensor configurations utilizing an inertial measurement unit
(IMU), global positioning system (GPS), or other sensors.

The state y3(t) contains depth information which is lost due to a
perspective transformation. To obtain the range of a feature point
�mðtÞ, it is necessary to scale the measured states y1(t) and y2(t)
using the depth. Thus, the main motivation of the observer is to
estimate the state y3(t). Let the estimates of the state y3(t) be de-
fined as ŷ3ðtÞ. To quantify the depth estimation mismatch, an esti-
mate error e(t) is defined as

e , y3 � ŷ3: ð9Þ

To ensure the estimate ŷ3ðtÞ is bounded, a locally Lipschitz projec-
tion law [33] is designed to update ŷ3ðtÞ as

_̂y3ðtÞ ¼ projðŷ3;/Þ ¼

/

if y3 6 ŷ3ðtÞ 6 �y3 or

ŷ3ðtÞ > �y3 and /ðtÞ 6 0 or

ŷ3ðtÞ < y3 and /ðtÞP 0

8>><
>>:

�/ if ŷ3ðtÞ > �y3 and /ðtÞ > 0

�/ if ŷ3ðtÞ < y3 and /ðtÞ < 0

8>>>>>>>>><
>>>>>>>>>:

; ð10Þ

where /ðy1; y2; ŷ3; b3; e1; e2Þ 2 R is defined as

/ , ŷ2
3b3 þ y2x1 � y1x2ð Þŷ3 � k3ðh2

1 þ h2
2Þŷ3

þ k3 �h1p1 � h2p2 þ h1 _y1 þ h2 _y2ð Þ; ð11Þ

and �/ðtÞ 2 R and �/ðtÞ 2 R are defined as

�/ , 1þ
�y3 � ŷ3

d

� �
/; �/ , 1þ

ŷ3 � y3

d

" #
/: ð12Þ

The projection in (10) ensures that the estimate ŷ3 2 Xd 8t P 0,
where Xd ¼ fŷ3 jy3 � d 6 ŷ3 6 �y3 þ dg for some known arbitrary
constant d > 0. The signal /(t) can be integrated to eliminate the
computation of optical flow, i.e., _y1 and _y2, and the signal ŷ3 can
be generated using

ŷ3 ¼ aþ b: ð13Þ

Instead of (11), in (13) the update law for the function
aðy1; y2; ŷ3;x; b; _bÞ is given by

_a ¼ ŷ2
3b3 þ ðy2x1 � y1x2Þŷ3 � k3ðh2

1 þ h2
2Þŷ3 � k3h1p1

� k3h2p2 � k3y1
_b1 � k3y2

_b2 þ k3
_b3

y2
1 þ y2

2

2

� �
ð14Þ

and b(y1, y2, b) is defined as

b , k3 b1y1 þ b2y2 � b3
y2

1 þ y2
2

2

� �� �
; ð15Þ

where k3 2 Rþ. The initial condition of the observer is selected as

aðt0Þ ¼ a0

where a0 is an arbitrary constant.

Assumption 2. The subsequent development is based on the
assumption that h2

1 þ h2
2 P e > 0; 8t P 0 for a positive constant e.

This assumption is an observability condition for the observer in
(10)–(15), and is the same as obtained previously in the literature
[13,17,27,34]. The condition physically implies that b1(t), b2(t),
b3(t) are not equal to zero simultaneously and the motion of the
camera should not be along the projected ray of the point being
observed.
Theorem 1. The observer presented in (10)–(15) is a globally expo-
nentially stable observer provided Assumption 1 is satisfied along with
the sufficient condition

k3 P
2�b3
km
þ d�b3 þ �y2 �x1 þ �y1 �x2

e
ð16Þ

where �b3; �x1 and �x2 are known upper bounds on b3(t), x1(t) and
x2(t).
Proof. For three cases of projection law described by (10) the e(t)
error dynamics are given by

Case 1: y3 6 ŷ3ðtÞ 6 �y3 or ŷ3ðtÞ > �y3 and /(t) 6 0 or ŷ3ðtÞ < y3

and /(t) P 0. Using (8) and (10)–(12), the error dynam-
ics of e(t) can be expressed as
_e ¼ 1 , ðy2x1 � y1x2Þeþ ðy3 þ ŷ3Þb3e� k3ðh2
1 þ h2

2Þe: ð17Þ
Case 2: ŷ3ðtÞ > �y3 and /(t) > 0. Using (8) and (10)–(12), the error
dynamics of e(t) can be expressed as
_e ¼ 1�
�y3 � ŷ3

d
/: ð18Þ
Case 3: ŷ3ðtÞ < y3 and /(t) < 0. Using (8) and (10)–(12), the error
dynamics of e(t) can be expressed as
_e ¼ 1�
ŷ3 � y3

d
/: ð19Þ
The stability of the proposed observer can be analyzed using
Lyapunov-based stability analysis. Consider a domain D � R

containing e(0) and a continuously differentiable, radially
unbounded candidate Lyapunov function, VðeÞ : D� ½0;1Þ ! Rþ,
defined as

V ,
1
2

e2: ð20Þ
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The stability of the error system will be analyzed for all three
cases of the projection law.

Case 1: Taking the derivative of V(e) and utilizing (17) yields
1 For
L1 nor
_V ¼ y3 þ ŷ3ð Þb3 � y2x1 þ y1x2 � k3ðh2
1 þ h2

2Þ
h i

e2: ð21Þ
If k3 satisfies the condition in (16), the bracketed term is strictly
negative and the following expression is obtained
_V 6 �k1V ; ð22Þ
where k1 2 Rþ.
Case 2: Taking the derivative of V(e) and utilizing (18) yields
_V ¼ ðy3 þ ŷ3Þb3 � y2x1 þ y1x2ð Þe2 � k3ðh2
1 þ h2

2Þe2

� e
�y3 � ŷ3

d
/; ð23Þ
where the last term on the right hand side of (23) is always nega-
tive, and hence, the inequality in (22) can be achieved.

Case 3: Taking the derivative of V(e) and utilizing (19) yields
_V ¼ ðy3 þ ŷ3Þb3 � y2x1 þ y1x2ð Þe2 � k3ðh2
1 þ h2

2Þe2

� e
ŷ3 � y3

d
/; ð24Þ
where the last term on the right hand side of (24) is always nega-
tive, and hence, the inequality in (22) can be achieved.

For all three cases of projection the Gronwall-Bellman lemma
[35] can be applied to (22) to yield

VðtÞ 6 Vð0Þ expð�k1tÞ:

Hence, from (20), the following upper bound for e(t) can be
obtained

keðtÞk 6 ckeð0Þk expð�k1tÞ; ð25Þ

where c 2 Rþ.
From (25), eðtÞ 2 L1.1 Since eðtÞ 2 L1, and using Remark 1,

y3ðtÞ 2 L1, thus ŷ3ðtÞ 2 L1. From the boundedness of y(t), b(t) and
x(t), and Assumption 2, (16) can be used to prove that k3 2 L1.
Based on the fact that eðtÞ; yðtÞ; xðtÞ; bðtÞ; k3 2 L1, standard linear
analysis methods can be used to prove that _eðtÞ 2 L1. Thus, y3(t) is
exponentially estimated and (2)–(4) can be used to recover the
Euclidean coordinates �mðtÞ of the feature point. h

If the condition in Assumption 2 is not satisfied and the gain k3

is chosen according to (16), the proposed observer is still exponen-
tially convergent, provided the PE condition in [26] is satisfied.

Theorem 2. The observer presented in (10)–(15) is a exponentially
stable observer provided k3 is chosen according to (16), Assumption 1
is satisfied, and the following PE condition is satisfiedZ tþT

t
h2

1ðsÞ þ h2
2ðsÞ

� �
ds P q > 0; 8t > t0; ð26Þ

where T;q 2 Rþ.
Proof. To examine the stability of the estimation error dynamics
in (17) under the assumption that (26) is satisfied, consider the
nominal system

_e ¼ �k3ðh2
1 þ h2

2Þe: ð27Þ
a function sðtÞ 2 Rn 8n 2 ½1;1Þ, sðtÞ 2 L1 means the function s(t) has a finite
m, i.e., ksðtÞkL1 ¼ suptP0ksðtÞk2 <1 where k � k2 denotes the 2-norm in Rn .
Using Theorem 2.5.1 of [36] the error system in (27) is globally
exponentially stable if the condition in (26) is satisfied. Since the
nominal system in (27) is globally exponentially stable using Theo-
rem 4.14 of [37], based on the Converse Lyapunov Theorem there
exists a function V : ½0;1Þ � R! R that satisfies the inequalities

c1kek2
6 Vðt; eÞ 6 c2kek2

;

@V
@t
þ @V
@e
�k3ðh2

1 þ h2
2Þe

� �
6 �c3kek2

;

@V
@e

�����
����� 6 c4kek

ð28Þ

where ci 2 Rþ; 8i ¼ f1; . . . ;4g. After using (20) with the properties
in (28) and substituting in the perturbed system (17), the following
inequalities can be obtained

_V 6
@V
@t
þ @V
@e
�k3ðh2

1 þ h2
2Þe

� �
;

þ @V
@e

y3 þ ŷ3ð Þb3 � y2x1 þ y1x2ð Þeð Þ;
_V 6 �c3kek2 þ c4gkek2

;

where g ¼ 2�b3
k þ d�b3 þ �y2 �x1 þ �y1 �x2, and _VðtÞ can be upper bounded

as

_V 6 �ðc3 � gc4Þkek2
:

Since k3 is selected according to (16) with sufficiently small d, c3 sat-
isfies c3 > gc4. Hence, the origin of the perturbed system (17) is
exponentially stable. h
Remark 2. As stated in [26], the PE condition physically implies
that all the linear velocities should not be identically zero and that
the camera should not be translating along the projected ray of any
feature point during any small interval of time [t, t + T]. If all of the
linear velocities are zero at any instant of time h2

1ðtÞ þ h2
2ðtÞ ¼ 0 and

the stability of the observer in (10)–(15) cannot be shown using
Theorem 1, Theorem 2 ensures stability of system in such cases.
5. Stability analysis in the presence of disturbances

In this section, the stability of the observer in (10)–(15) is ana-
lyzed in the presence of an exogenous input such as a disturbance
acting on the camera motion or a target object begins to move. The
disturbance enters the system as

_�m ¼
1 0 0 0 �x3 x2

0 1 0 x3 0 �x1

0 0 1 �x2 x1 0

2
64

3
75 bþ Db

xþ Dx

� �
; ð29Þ

where Db(t), Dx(t) represent the exogenous inputs such that DbðtÞ;
DxðtÞ 2 Lpe

2 with sup06t6skDb(t)k 6 rb and sup06t6skDx(t)k 6 rx
for some rb; rx 2 Rþ. Using (3) and (29), the dynamics of the
unmeasurable state y3(t) can be expressed as

_y3 ¼ �y2
3b3 � y2y3x1 þ y1y3x2 þ Dy3; ð30Þ

where

Dy3 ¼ �y2
3Db3 � y2y3Dx1 þ y1y3Dx2:
2 The space Lpe ¼ fujus 2 Lp;8s 2 ½0;1�g, and us is a truncation of u defined by

usðtÞ ¼
uðyÞ; 0 6 t 6 s

0; t > s

	
.



Table 1
Comparison of the presented observer with observers in [26,27].

Observer in this paper Observer via I&I [27] Observer in [26]

Global exponential error convergence Global exponential error convergence Local exponential error convergence

Observability: h2
1ðtÞ þ h2

2ðtÞP e > 0; 8t P 0, Observability: h2
1ðtÞ þ h2

2ðtÞP � > 0; 8t P 0 Observability: 9=�t : 8t > �t; h2
1ðtÞ þ h2

2ðtÞ ¼ 0

stable if 9t : h2
1ðtÞ þ h2

2ðtÞ ¼ 0 singular if h2
1ðtÞ þ h2

2ðtÞ ¼ 0 for any time t stable if 9t : h2
1ðtÞ þ h2

2ðtÞ ¼ 0
Requires camera velocities and linear accelerations Requires camera velocities and linear accelerations Requires only camera velocities
Reduced order Reduced order Full order
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Theorem 3. The observer presented in (10)–(15) is finite-gain Lp
3

stable where p 2 [1,1] with respect to the exogenous input [DbT DxT]T

and Lp gain less than or equal to 1
k1

.

Proof. Using (30) and (10)–(15) the error system can be written as

_e ¼ ðy2x1 � y1x2Þeþ ðy3 þ ŷ3Þb3e� k3ðh2
1 þ h2

2Þeþ Dy3k3: ð31Þ

The error system in (31) can be expressed in the following form

_e ¼ f ðe;uÞ;
r ¼ hðeÞ;

where u(t) = k3Dy3(t) is an exogenous disturbance/noise input,
r(t) = e(t). Let R be a domain containing e(t) = 0 and u(t) = 0, the
function f : R� R! R is linear and globally Lipschitz in
uðtÞ; h : R! R is continuous in e(t). Using Theorem 1, the unforced
system

_e ¼ f ðe;0Þ

is globally exponentially stable with the Lyapunov function in (20)
which satisfies the following bounds

0:5kek2
6 VðeÞ 6 0:5kek2

;

@V
@t
þ @V
@e
ðf ðe;0ÞÞ 6 �k1kek2

;

@V
@e

����
���� 6 kek:

ð32Þ

Since the function f(e, u) is globally Lipschitz in u(t), the following
inequality is satisfied

kf ðe;uÞ � f ðe;0Þk 6 kuk: ð33Þ

Since (32) and (33) are satisfied, using Theorem 5.1 of [37] the error
system in (31) is finite gain Lp stable where p 2 [1,1] with Lp gain
less than or equal to 1

k1
for each eð0Þ 2 R, i.e.,

kekLp
6

1
k1
kukLp

þ ke0kq;

where

q ¼
1; if n ¼ 1

1
k1n

� �1=n
; if n 2 ½1;1Þ

8<
: :

The velocities of the object denoted by bO and xO can be
assumed to be Lpe disturbances acting on the system as shown in
(29). Thus, Theorem 3 implies that even if the stationary object
assumption is violated, the observer errors are bounded. The Lp

gain is the measure of accuracy of the estimates and gives an upper
bound on the estimation errors. The Lp gain can be reduced by
increasing the gain k3 which in turn reduces the constant k1 (see
(21) and (22)). h
3 A mapping F : Lm
e ! Ln

e is finite-gain L stable if there exist non-negative constants .
and v such that kðFuÞkL 6 .kuskL þ v for all u 2 Lm

e and s 2 [0,1) where the extended
space Lm

e is defined as Lm
e ¼ ujus 2 Lm; 8s 2 ½0;1Þf g.
6. Discussion

A comparison between the observer presented in this paper
with the I&I observer [27] and the observer in [26] is provided in
Table 1 and the numbered list below.

1. The presented observer achieves global exponential estimation
of the 3D Euclidean coordinates of feature points, which is a
similar result achieved by the observer developed in [27]. The
observer presented in [26] only achieves local exponential con-
vergence of the estimation errors. Thus, the observers presented
in this paper and in [27] can have arbitrary initial conditions as
opposed to the initial conditions required by the observer pre-
sented in [26]. A limitation of the local nature of the result in
[26] is illustrated in the subsequent simulations.

2. One of the advantages of the observer presented in [26] over the
observer in [27], is the use of a less restrictive observability con-
dition which enables the observer to be used for a larger set of
camera motions. The observability condition in this paper is the
same as that in [27], but if the observability condition in [27] is
not satisfied, the I&I observer becomes singular. The advantage
of the observer in this paper is that even if the observability
condition in Assumption 2 is not satisfied, the observer is still
locally exponentially stable and thus can encompass a larger
set of camera motions. The limitations of the singularity issue
with the observer in [27] is illustrated in Section 7.

3. The proposed observer requires measurements of the camera
linear acceleration along with camera velocities and image fea-
tures, which are also required by the observer in [27]. Thus, the
observers presented in this paper and in [27] are more sensitive
to noisy input measurements compared to the observer in [26].
Improved steady-state performance is illustrated by the obser-
ver in [26] in the presence of noise in Section 7.

4. The gain condition in [27] is a function of the image size, cam-
era velocities and acceleration. On the contrary, the gain condi-
tion for the observer in this paper is only a function of image
size and camera velocities.

7. Simulations and experiments

Simulations are conducted to evaluate the performance of the
observer. The performance of the observer is compared with the
observers in [26,27]. For each simulation the focal length of the
camera is set to k = 30 and the gains for the estimators are adjusted
to achieve the best performance (i.e., the least estimation error). In
contrast to the trial-and-error approach, methodological ap-
proaches such as [38–40] could be used to adjust the observer
gains. For the first simulation, the initial location of the point on
the target with respect to the initial camera frame is selected as
�mðt0Þ ¼ ½10 5 0:5�T m. The camera velocities are selected as

b ¼ 0:3 0:4þ 0:1 sin
pt
4

� �
� 0:3

� �T

m=s;

x ¼ 0 � p
30

0
h iT

rad=s:
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Fig. 2. Comparison between the true and estimated depth in the presence of
measurement noise, (a) the top subplot shows the estimated depth using the
observer presented in this paper, (b) the middle subplot shows the estimated depth
using the observer in [27], (c) the bottom subplot shows the estimated depth using
the observer in [26].

Table 2
Comparison of the RMS depth estimation errors.

Observer in this
paper

Observer in
[26]

Observer in
[27]

Transient RMS error 0.3128 0.3477 0.3547
Steady-state RMS

error
0.1717 0.0155 0.2150
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Fig. 3. Comparison of the depth estimation using the observer in this paper and the
observer in [26] when camera motion does not satisfy Assumption 2.
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Additive white Guassian noise with a signal-to-noise ratio (SNR) of
20 dB is added to the image pixel measurements, and noise with
zero mean and a variance of 0.01 is added to the velocity measure-
ments. The velocity signal is differentiated using the ‘‘Derivative’’
block in Simulink to obtain a linear acceleration signal. The esti-
mates are integrated with a step size of 0.01 s using the ‘‘ode4’’ Mat-
lab command which uses a Runge–Kutta (R-K) integrator. The initial
condition of the observer is set to a(t0) = 5 with k3 = 1.55 � 10�3. For
the observer in [27], the initial condition is chosen to be4

n(t0) = �0.9 and the observer gain is set to 2.5 � 10�5. The initial con-
ditions and the observer gains for the observer in [26] are selected5

as k1 = k2 = 200, k3 = 0.1 and ŷ1ðt0Þ ¼ 600; ŷ2ðt0Þ ¼ 300; ŷ3ðt0Þ ¼ 50.
The initial conditions are selected so that the initial value of the esti-
mated depth is equal for all three observers. A comparison of the
depth estimation performance of the observers is shown in Fig. 2.
As shown in Table 2, the root-mean square (RMS) of the depth esti-
mation error is also compared for the transient and the steady-state
response. The transient period is selected to be the first 0.2 s. The ob-
server presented in this paper has the least transient RMS error, and
the observer in [26] has the minimum steady-state RMS error.

A second simulation is performed based on Discussion Point 2
of Section 6. The camera velocities for this simulation are selected
as
4 The symbol n(t) is taken from [27] and denotes an auxiliary state.
5 The symbols k1; k2; k3; ŷ1ðtÞ; ŷ2ðtÞ are taken from [26]. The observer in [26] is a

third order observer and ŷ1ðtÞ; ŷ2ðtÞ denotes the estimates of y1(t) and y2(t).
b ¼ 0 0 0:5 cosðpt=2Þ½ �T m=s;

x ¼ ½0 0 0�T rad=s;

which violates the observability condition in Assumption 2 but sat-
isfies the condition in (26). Again, the image pixel data is corrupted
with the additive white Gaussian noise with an SNR of 20 dB. Noise
of zero mean and 0.01 variance is added to the camera velocity
measurements. Using the Runge–Kutta integrator with a time step
of 0.03 s, the state estimates are computed. Fig. 3 shows the depth
estimation performance of the observer presented in this paper
and the observer in [26] for the same initial conditions ŷ3ðt0Þ.
The observer presented in this paper exhibits a better transient
performance compared to the observer in [26]. Fig. 4 shows the
evolution of h2

1ðtÞ þ h2
2ðtÞ. At 1 s, h2

1ðtÞ þ h2
2ðtÞ ¼ 0:1 and at 3 s,

h2
1ðtÞ þ h2

2ðtÞ ¼ 10e� 4. In Fig. 5, there is a peak in the depth esti-
mate of [27] near t = 1 s. The response recovers from the peak at
t = 1 s but at t = 3 s the observer in [27] becomes singular. The re-
sults in Fig. 5 coincide with the theoretical prediction discussed in
Point 2 of Section 6.

A third simulation is performed using camera velocities of

b ¼ 0:3 0:4þ 0:1 sin
pt
4

� �
� 1

� �T

m=s;

x ¼ 0
p
3

0
h iT

rad=s;
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Fig. 9. AUV experimental setup.

Fig. 10. An ith camera frame displaying the image-based tracking of buoy target.
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to demonstrate that for large initial conditions the observer pre-
sented in this paper converges while the local observer in [26] is
unstable. In [26], the domain of initial conditions is small for large
b3(t), x1(t) and x2(t). The initial relative position of the target point
is �mðt0Þ ¼ ½10 5 5�T m. The observer in this paper is initialized to
a(t0) = 300 and the gain is selected as k3 = 0.09. For the observer
in [26], the initial conditions and gains are set to
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ŷ1ðt0Þ ¼ 60; ŷ2ðt0Þ ¼ 30, ŷ3ðt0Þ ¼ 144 and k1 = k2 = 12, k3 = 10.2. The
observers are integrated using the Runge–Kutta integrator with a
time step of 0.01 s. The state estimation results are shown in Figs. 6–
8. Since the states y1(t) and y2(t) are measurable, the initial condi-
tions of ŷ1ðtÞ and ŷ2ðtÞ are set equal to the initial values of y1(t)
and y2(t). The gains of the observer in [26] are tuned and the initial
condition is progressively increased until the observer error con-
verges. Convergence is observed for ŷ3ðt0Þ 6 143 but not for
ŷ3ðt0ÞP 144. For the observer presented in this paper, the observer
error converges even for an initial condition as large as a(t0) = 300.
In this simulation a value of a(t0) = 300 corresponds to
ŷ3ðt0Þ ¼ 583:5 for the proposed observer. The simulation demon-
strates that the observer in [26] is unstable when the initial condi-
tions are chosen outside a local domain.

Experiments are conducted to estimate the range of a 9-in.
Mooring buoy floating in the middle of a water column as observed
by a camera rigidly attached to an autonomous underwater vehicle
(AUV). Fig. 9 shows the AUV experimental platform. The AUV is
equipped with a Matrix Vision mvBlueFox-120a color USB camera,
a doppler velocity log (DVL), a pressure transducer, a compass and
an inertial measurement unit (IMU). Two computers running
Microsoft Windows Server 2008 are used on the AUV. One com-
puter is dedicated for running image processing algorithms and
the other computer executes sensor data fusion, low level compo-
nent communication and control, and mission planning. An un-
scented Kalman filter (UKF) is used to fuse the IMU, DVL and
pressure transducer data at 100 Hz to accurately estimate the po-
sition, orientation and velocity of the AUV with respect to an iner-
tial frame by correcting the IMU bias. This position data is used to
compare the results of the observer with a relative ground truth
measurement of the AUV by rotating the localized AUV position
into the camera fixed frame. The buoy is tracked in the video image
of dimension 640 � 480 using a standard feature tracking algo-
rithm as shown in Fig. 10, and pixel data of the centroid of the buoy
is recorded at 15 Hz. The camera is calibrated using a standard
camera calibration algorithm [41] and is given by

A ¼
749:82231 0 321:05569

0 750:19507 292:41939
0 0 1

2
64

3
75:

The linear and angular velocity, and linear acceleration data ob-
tained from the UKF is logged at the camera frame rate. Using the
velocity, linear acceleration and pixel data obtained from the AUV
sensors, the range of the buoy is estimated with respect to the cam-
era. The initial condition is chosen as a(t0) = 0.08 and the observer
gain is selected to be k3 = 2 � 10e�6. The observer equations are
integrated using a Runge–Kutta integrator with a time step of
1

15 s. A comparison of the estimated range with the ground truth
measurement is shown in Fig. 11. In Fig. 12, the feature tracking
algorithm fails for several frames near time t = 6 s. The range esti-
mation algorithm shows robust performance even in the presence
of feature tracking errors as illustrated in Fig. 11.

8. Conclusion

A nonlinear observer is presented for the range estimation of
feature points using a moving camera which is globally exponen-
tially stable provided an observability condition is satisfied. The
exponential stability of the estimation error is also shown under
a relaxed observability condition. The robustness of the observer
is characterized using the L2½0;1Þ gain from the external distur-
bance acting on the camera motion and pixel noise to the estima-
tion error. Comparison of the simulation results with the existing
observers shows that the proposed observer can be implemented
for more general camera motions and larger set of initial condi-
tions. Experimental results demonstrate the robust performance
of the observer in the presence of sensor noise.
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